Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mol Biol ; 435(24): 168338, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-37923120

RESUMO

To facilitate the eukaryotic repriming pathway of DNA damage tolerance, PrimPol synthesises de novo oligonucleotide primers downstream of polymerase-stalling obstacles. These primers enable replicative polymerases to resume synthesis and ensure the timely completion of DNA replication. Initiating synthesis de novo requires the coordination of single-stranded DNA, initiating nucleotides, and metal ions within PrimPol's active site to catalyze the formation of the first phosphodiester bond. Here we examine the interactions between human PrimPol's catalytic domain, nucleotides, and DNA template during each of the various catalytic steps to determine the 'choreography' of primer synthesis, where substrates bind in an ordered manner. Our findings show that the ability of PrimPol to conduct de novo primer synthesis is underpinned by a network of stabilising interactions between the enzyme, template, and nucleotides, as we previously observed for related primase CRISPR-Associated Prim-Pol (CAPP). Together, these findings establish a detailed model for the initiation of DNA synthesis by human PrimPol, which appears highly conserved.


Assuntos
Domínio Catalítico , Replicação do DNA , DNA Polimerase Dirigida por DNA , Humanos , DNA Primase/metabolismo , DNA de Cadeia Simples/genética , DNA Polimerase Dirigida por DNA/metabolismo , Enzimas Multifuncionais/genética , Enzimas Multifuncionais/metabolismo , Nucleotídeos
2.
Curr Opin Struct Biol ; 82: 102652, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37459807

RESUMO

Members of the primase-polymerase (Prim-Pol) superfamily are found in all domains of life and play diverse roles in genome stability, including primer synthesis during DNA replication, lesion repair and damage tolerance. This review focuses primarily on Prim-Pol members capable of de novo primer synthesis that have experimentally derived structural models available. We discuss the mechanism of DNA primer synthesis initiation by Prim-Pol catalytic domains, based on recent structural and functional studies. We also describe a general model for primer initiation that also includes the ancillary domains/subunits, which stimulate the initiation of primer synthesis.


Assuntos
DNA Primase , Replicação do DNA , DNA Primase/química , Domínio Catalítico
3.
Nucleic Acids Res ; 51(14): 7125-7142, 2023 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-37279911

RESUMO

The discovery of reverse transcriptases (RTs) challenged the central dogma by establishing that genetic information can also flow from RNA to DNA. Although they act as DNA polymerases, RTs are distantly related to replicases that also possess de novo primase activity. Here we identify that CRISPR associated RTs (CARTs) directly prime DNA synthesis on both RNA and DNA. We demonstrate that RT-dependent priming is utilized by some CRISPR-Cas complexes to synthesise new spacers and integrate these into CRISPR arrays. Expanding our analyses, we show that primer synthesis activity is conserved in representatives of other major RT classes, including group II intron RT, telomerase and retroviruses. Together, these findings establish a conserved innate ability of RTs to catalyse de novo DNA primer synthesis, independently of accessory domains or alternative priming mechanisms, which likely plays important roles in a wide variety of biological pathways.


Reverse transcriptases (RTs) are replicative enzymes that copy RNA into DNA and undertake roles, including viral replication, retrotransposition and telomere maintenance. The initiation of RT synthesis activities is usually dependent on the presence of a primer. The current dogma proposes that a variety of indirect, RT-independent, priming mechanisms instigate synthesis. However, this study establishes that CRISPR-associated RTs (CARTs) are capable of priming DNA synthesis from scratch, which enables the capture of foreign genetic material for storage in CRISPR arrays. The authors also report that other notable RT family members, including retrotransposon RTs, telomerase and retroviral RT are, surprisingly, able to directly catalyze primer synthesis. These findings significantly alter our understanding of priming mechanisms utilised by RTs in various biological pathways.


Assuntos
DNA Polimerase Dirigida por RNA , DNA Polimerase Dirigida por DNA/genética , Transcriptase Reversa do HIV/genética , Íntrons/genética , Retroviridae/genética , RNA/genética , DNA Polimerase Dirigida por RNA/genética , DNA Polimerase Dirigida por RNA/metabolismo , Replicação do DNA
4.
Biosci Rep ; 43(7)2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37358261

RESUMO

To pass on genetic information to the next generation, cells must faithfully replicate their genomes to provide copies for each daughter cell. To synthesise these duplicates, cells employ specialised enzymes called DNA polymerases, which rapidly and accurately replicate nucleic acid polymers. However, most polymerases lack the ability to directly initiate DNA synthesis and required specialised replicases called primases to make short polynucleotide primers, from which they then extend. Replicative primases (eukaryotes and archaea) belong to a functionally diverse enzyme superfamily known as Primase-Polymerases (Prim-Pols), with orthologues present throughout all domains of life. Characterised by a conserved catalytic Prim-Pol domain, these enzymes have evolved various roles in DNA metabolism, including DNA replication, repair, and damage tolerance. Many of these biological roles are fundamentally underpinned by the ability of Prim-Pols to generate primers de novo. This review examines our current understanding of the catalytic mechanisms utilised by Prim-Pols to initiate primer synthesis.


Assuntos
DNA Primase , DNA Polimerase Dirigida por DNA , DNA Primase/genética , DNA Primase/metabolismo , DNA Polimerase Dirigida por DNA/genética , Replicação do DNA , Domínio Catalítico , DNA
5.
Nature ; 605(7911): 767-773, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35508653

RESUMO

During the initiation of DNA replication, oligonucleotide primers are synthesized de novo by primases and are subsequently extended by replicative polymerases to complete genome duplication. The primase-polymerase (Prim-Pol) superfamily is a diverse grouping of primases, which includes replicative primases and CRISPR-associated primase-polymerases (CAPPs) involved in adaptive immunity1-3. Although much is known about the activities of these enzymes, the precise mechanism used by primases to initiate primer synthesis has not been elucidated. Here we identify the molecular bases for the initiation of primer synthesis by CAPP and show that this mechanism is also conserved in replicative primases. The crystal structure of a primer initiation complex reveals how the incoming nucleotides are positioned within the active site, adjacent to metal cofactors and paired to the templating single-stranded DNA strand, before synthesis of the first phosphodiester bond. Furthermore, the structure of a Prim-Pol complex with double-stranded DNA shows how the enzyme subsequently extends primers in a processive polymerase mode. The structural and mechanistic studies presented here establish how Prim-Pol proteins instigate primer synthesis, revealing the requisite molecular determinants for primer synthesis within the catalytic domain. This work also establishes that the catalytic domain of Prim-Pol enzymes, including replicative primases, is sufficient to catalyse primer formation.


Assuntos
DNA Primase , Replicação do DNA , Domínio Catalítico , DNA/genética , DNA Primase/metabolismo , Primers do DNA/metabolismo
6.
Sci Adv ; 7(49): eabh1004, 2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34860556

RESUMO

Replication stress and DNA damage stall replication forks and impede genome synthesis. During S phase, damage tolerance pathways allow lesion bypass to ensure efficient genome duplication. One such pathway is repriming, mediated by Primase-Polymerase (PrimPol) in human cells. However, the mechanisms by which PrimPol is regulated are poorly understood. Here, we demonstrate that PrimPol is phosphorylated by Polo-like kinase 1 (PLK1) at a conserved residue between PrimPol's RPA binding motifs. This phosphorylation is differentially modified throughout the cell cycle, which prevents aberrant recruitment of PrimPol to chromatin. Phosphorylation can also be delayed and reversed in response to replication stress. The absence of PLK1-dependent regulation of PrimPol induces phenotypes including chromosome breaks, micronuclei, and decreased survival after treatment with camptothecin, olaparib, and UV-C. Together, these findings establish that deregulated repriming leads to genomic instability, highlighting the importance of regulating this damage tolerance pathway following fork stalling and throughout the cell cycle.

7.
Nat Commun ; 12(1): 3690, 2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-34140468

RESUMO

CRISPR-Cas pathways provide prokaryotes with acquired "immunity" against foreign genetic elements, including phages and plasmids. Although many of the proteins associated with CRISPR-Cas mechanisms are characterized, some requisite enzymes remain elusive. Genetic studies have implicated host DNA polymerases in some CRISPR-Cas systems but CRISPR-specific replicases have not yet been discovered. We have identified and characterised a family of CRISPR-Associated Primase-Polymerases (CAPPs) in a range of prokaryotes that are operonically associated with Cas1 and Cas2. CAPPs belong to the Primase-Polymerase (Prim-Pol) superfamily of replicases that operate in various DNA repair and replication pathways that maintain genome stability. Here, we characterise the DNA synthesis activities of bacterial CAPP homologues from Type IIIA and IIIB CRISPR-Cas systems and establish that they possess a range of replicase activities including DNA priming, polymerisation and strand-displacement. We demonstrate that CAPPs operonically-associated partners, Cas1 and Cas2, form a complex that possesses spacer integration activity. We show that CAPPs physically associate with the Cas proteins to form bespoke CRISPR-Cas complexes. Finally, we propose how CAPPs activities, in conjunction with their partners, may function to undertake key roles in CRISPR-Cas adaptation.


Assuntos
Bactérias/genética , Proteínas de Bactérias/metabolismo , Bacteroidetes/genética , Proteínas Associadas a CRISPR/metabolismo , Sistemas CRISPR-Cas , DNA Primase/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , Bactérias/enzimologia , Proteínas de Bactérias/genética , Bacteroidetes/enzimologia , Biologia Computacional , DNA Primase/genética , Primers do DNA/biossíntese , DNA Polimerase Dirigida por DNA/genética , Dimerização , Escherichia coli/metabolismo , Expressão Gênica , Mutação , Filogenia , Células Procarióticas/metabolismo , Proteínas Recombinantes , Ribonucleotídeos/metabolismo
8.
Nucleic Acids Res ; 49(9): 4831-4847, 2021 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-33744934

RESUMO

To bypass a diverse range of fork stalling impediments encountered during genome replication, cells possess a variety of DNA damage tolerance (DDT) mechanisms including translesion synthesis, template switching, and fork reversal. These pathways function to bypass obstacles and allow efficient DNA synthesis to be maintained. In addition, lagging strand obstacles can also be circumvented by downstream priming during Okazaki fragment generation, leaving gaps to be filled post-replication. Whether repriming occurs on the leading strand has been intensely debated over the past half-century. Early studies indicated that both DNA strands were synthesised discontinuously. Although later studies suggested that leading strand synthesis was continuous, leading to the preferred semi-discontinuous replication model. However, more recently it has been established that replicative primases can perform leading strand repriming in prokaryotes. An analogous fork restart mechanism has also been identified in most eukaryotes, which possess a specialist primase called PrimPol that conducts repriming downstream of stalling lesions and structures. PrimPol also plays a more general role in maintaining efficient fork progression. Here, we review and discuss the historical evidence and recent discoveries that substantiate repriming as an intrinsic replication restart pathway for maintaining efficient genome duplication across all domains of life.


Assuntos
Replicação do DNA , DNA/biossíntese , Animais , DNA/história , Dano ao DNA , DNA Primase/classificação , DNA Primase/fisiologia , DNA Polimerase Dirigida por DNA/fisiologia , Genoma , História do Século XX , Modelos Genéticos , Estresse Fisiológico/genética
9.
Nat Commun ; 11(1): 5863, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33203852

RESUMO

Stalled replication forks can be restarted and repaired by RAD51-mediated homologous recombination (HR), but HR can also perform post-replicative repair after bypass of the obstacle. Bulky DNA adducts are important replication-blocking lesions, but it is unknown whether they activate HR at stalled forks or behind ongoing forks. Using mainly BPDE-DNA adducts as model lesions, we show that HR induced by bulky adducts in mammalian cells predominantly occurs at post-replicative gaps formed by the DNA/RNA primase PrimPol. RAD51 recruitment under these conditions does not result from fork stalling, but rather occurs at gaps formed by PrimPol re-priming and resection by MRE11 and EXO1. In contrast, RAD51 loading at double-strand breaks does not require PrimPol. At bulky adducts, PrimPol promotes sister chromatid exchange and genetic recombination. Our data support that HR at bulky adducts in mammalian cells involves post-replicative gap repair and define a role for PrimPol in HR-mediated DNA damage tolerance.


Assuntos
Adutos de DNA/genética , DNA Primase/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , Recombinação Homóloga/fisiologia , Enzimas Multifuncionais/metabolismo , 4-Nitroquinolina-1-Óxido/toxicidade , 7,8-Di-Hidro-7,8-Di-Hidroxibenzo(a)pireno 9,10-óxido/metabolismo , Benzo(a)Antracenos/administração & dosagem , Benzo(a)Antracenos/toxicidade , Linhagem Celular , Adutos de DNA/metabolismo , DNA Primase/genética , DNA de Cadeia Simples , DNA Polimerase Dirigida por DNA/genética , Humanos , Enzimas Multifuncionais/genética , Quinolonas/toxicidade , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Imagem Individual de Molécula , Troca de Cromátide Irmã
10.
Nat Commun ; 11(1): 4196, 2020 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-32826907

RESUMO

Cells utilise specialized polymerases from the Primase-Polymerase (Prim-Pol) superfamily to maintain genome stability. Prim-Pol's function in genome maintenance pathways including replication, repair and damage tolerance. Mycobacteria contain multiple Prim-Pols required for lesion repair, including Prim-PolC that performs short gap repair synthesis during excision repair. To understand the molecular basis of Prim-PolC's gap recognition and synthesis activities, we elucidated crystal structures of pre- and post-catalytic complexes bound to gapped DNA substrates. These intermediates explain its binding preference for short gaps and reveal a distinctive modus operandi called Synthesis-dependent Template Displacement (STD). This mechanism enables Prim-PolC to couple primer extension with template base dislocation, ensuring that the unpaired templating bases in the gap are ushered into the active site in an ordered manner. Insights provided by these structures establishes the molecular basis of Prim-PolC's gap recognition and extension activities, while also illuminating the mechanisms of primer extension utilised by closely related Prim-Pols.


Assuntos
Proteínas de Bactérias/química , DNA Primase/química , Reparo do DNA , Replicação do DNA , DNA Polimerase Dirigida por DNA/química , DNA/química , Mycobacterium/genética , Mycobacterium/metabolismo , Proteínas de Bactérias/metabolismo , Sequência de Bases , Sítios de Ligação , Domínio Catalítico , Cristalografia por Raios X , DNA/metabolismo , DNA Primase/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , Modelos Moleculares , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas
11.
Hum Mol Genet ; 29(8): 1292-1309, 2020 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-32191790

RESUMO

As the powerhouses of the eukaryotic cell, mitochondria must maintain their genomes which encode proteins essential for energy production. Mitochondria are characterized by guanine-rich DNA sequences that spontaneously form unusual three-dimensional structures known as G-quadruplexes (G4). G4 structures can be problematic for the essential processes of DNA replication and transcription because they deter normal progression of the enzymatic-driven processes. In this study, we addressed the hypothesis that mitochondrial G4 is a source of mutagenesis leading to base-pair substitutions. Our computational analysis of 2757 individual genomes from two Italian population cohorts (SardiNIA and InCHIANTI) revealed a statistically significant enrichment of mitochondrial mutations within sequences corresponding to stable G4 DNA structures. Guided by the computational analysis results, we designed biochemical reconstitution experiments and demonstrated that DNA synthesis by two known mitochondrial DNA polymerases (Pol γ, PrimPol) in vitro was strongly blocked by representative stable G4 mitochondrial DNA structures, which could be overcome in a specific manner by the ATP-dependent G4-resolving helicase Pif1. However, error-prone DNA synthesis by PrimPol using the G4 template sequence persisted even in the presence of Pif1. Altogether, our results suggest that genetic variation is enriched in G-quadruplex regions that impede mitochondrial DNA replication.


Assuntos
DNA Helicases/genética , DNA Polimerase gama/genética , DNA Primase/genética , Replicação do DNA/genética , DNA Polimerase Dirigida por DNA/genética , Quadruplex G , Enzimas Multifuncionais/genética , DNA Mitocondrial/genética , Genoma Mitocondrial/genética , Guanina/metabolismo , Humanos , Itália , Mitocôndrias/genética , Mutagênese/genética , Mutação/genética , Conformação de Ácido Nucleico , Sequenciamento Completo do Genoma
12.
PLoS One ; 14(3): e0213383, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30840704

RESUMO

Replicative DNA polymerases are frequently stalled at damaged template strands. Stalled replication forks are restored by the DNA damage tolerance (DDT) pathways, error-prone translesion DNA synthesis (TLS) to cope with excessive DNA damage, and error-free template switching (TS) by homologous DNA recombination. PDIP38 (Pol-delta interacting protein of 38 kDa), also called Pol δ-interacting protein 2 (PolDIP2), physically associates with TLS DNA polymerases, polymerase η (Polη), Polλ, and PrimPol, and activates them in vitro. It remains unclear whether PDIP38 promotes TLS in vivo, since no method allows for measuring individual TLS events in mammalian cells. We disrupted the PDIP38 gene, generating PDIP38-/- cells from the chicken DT40 and human TK6 B cell lines. These PDIP38-/- cells did not show a significant sensitivity to either UV or H2O2, a phenotype not seen in any TLS-polymerase-deficient DT40 or TK6 mutants. DT40 provides a unique opportunity of examining individual TLS and TS events by the nucleotide sequence analysis of the immunoglobulin variable (Ig V) gene as the cells continuously diversify Ig V by TLS (non-templated Ig V hypermutation) and TS (Ig gene conversion) during in vitro culture. PDIP38-/- cells showed a shift in Ig V diversification from TLS to TS. We measured the relative usage of TLS and TS in TK6 cells at a chemically synthesized UV damage (CPD) integrated into genomic DNA. The loss of PDIP38 also caused an increase in the relative usage of TS. The number of UV-induced sister chromatid exchanges, TS events associated with crossover, was increased a few times in PDIP38-/- human and chicken cells. Collectively, the loss of PDIP38 consistently causes a shift in DDT from TLS to TS without enhancing cellular sensitivity to DNA damage. We propose that PDIP38 controls the relative usage of TLS and TS increasing usage of TLS without changing the overall capability of DDT.


Assuntos
Dano ao DNA , Proteínas Nucleares/metabolismo , Animais , Proteínas Aviárias/deficiência , Proteínas Aviárias/genética , Proteínas Aviárias/metabolismo , Linhagem Celular , Galinhas , DNA/biossíntese , DNA/genética , DNA Polimerase beta/deficiência , DNA Polimerase beta/genética , DNA Polimerase beta/metabolismo , DNA Primase/deficiência , DNA Primase/genética , DNA Primase/metabolismo , Reparo do DNA , Replicação do DNA , DNA Polimerase Dirigida por DNA/deficiência , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , Técnicas de Inativação de Genes , Genes de Imunoglobulinas , Humanos , Enzimas Multifuncionais/deficiência , Enzimas Multifuncionais/genética , Enzimas Multifuncionais/metabolismo , Proteínas Nucleares/deficiência , Proteínas Nucleares/genética , Moldes Genéticos
13.
Nucleic Acids Res ; 47(8): 4026-4038, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-30715459

RESUMO

Eukaryotic Primase-Polymerase (PrimPol) is an enzyme that maintains efficient DNA duplication by repriming replication restart downstream of replicase stalling lesions and structures. To elucidate the cellular requirements for PrimPol in human cells, we generated PrimPol-deleted cell lines and show that it plays key roles in maintaining active replication in both the nucleus and mitochondrion, even in the absence of exogenous damage. Human cells lacking PrimPol exhibit delayed recovery after UV-C damage and increased mutation frequency, micronuclei and sister chromatin exchanges but are not sensitive to genotoxins. PrimPol is also required during mitochondrial replication, with PrimPol-deficient cells having increased mtDNA copy number but displaying a significant decrease in replication. Deletion of PrimPol in XPV cells, lacking functional polymerase Eta, causes an increase in DNA damage sensitivity and pronounced fork stalling after UV-C treatment. We show that, unlike canonical TLS polymerases, PrimPol is important for allowing active replication to proceed, even in the absence of exogenous damage, thus preventing the accumulation of excessive fork stalling and genetic mutations. Together, these findings highlight the importance of PrimPol for maintaining efficient DNA replication in unperturbed cells and its complementary roles, with Pol Eta, in damage tolerance in human cells.


Assuntos
Núcleo Celular/efeitos da radiação , DNA Primase/genética , Replicação do DNA/efeitos da radiação , DNA Polimerase Dirigida por DNA/genética , DNA/genética , Mitocôndrias/efeitos da radiação , Enzimas Multifuncionais/genética , 4-Nitroquinolina-1-Óxido/farmacologia , Bleomicina/farmacologia , Linhagem Celular Transformada , Linhagem Celular Tumoral , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/genética , Cisplatino/farmacologia , DNA/efeitos dos fármacos , DNA/metabolismo , DNA Primase/deficiência , Replicação do DNA/efeitos dos fármacos , DNA Polimerase Dirigida por DNA/deficiência , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/efeitos da radiação , Deleção de Genes , Humanos , Micronúcleos com Defeito Cromossômico/efeitos dos fármacos , Micronúcleos com Defeito Cromossômico/efeitos da radiação , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/genética , Enzimas Multifuncionais/deficiência , Mutagênicos/farmacologia , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Osteoblastos/efeitos da radiação , Quinolonas/farmacologia , Troca de Cromátide Irmã/efeitos dos fármacos , Troca de Cromátide Irmã/efeitos da radiação , Raios Ultravioleta/efeitos adversos
14.
EMBO J ; 38(3)2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30478192

RESUMO

During DNA replication, conflicts with ongoing transcription are frequent and require careful management to avoid genetic instability. R-loops, three-stranded nucleic acid structures comprising a DNA:RNA hybrid and displaced single-stranded DNA, are important drivers of damage arising from such conflicts. How R-loops stall replication and the mechanisms that restrain their formation during S phase are incompletely understood. Here, we show in vivo how R-loop formation drives a short purine-rich repeat, (GAA)10, to become a replication impediment that engages the repriming activity of the primase-polymerase PrimPol. Further, the absence of PrimPol leads to significantly increased R-loop formation around this repeat during S phase. We extend this observation by showing that PrimPol suppresses R-loop formation in genes harbouring secondary structure-forming sequences, exemplified by G quadruplex and H-DNA motifs, across the genome in both avian and human cells. Thus, R-loops promote the creation of replication blocks at susceptible structure-forming sequences, while PrimPol-dependent repriming limits the extent of unscheduled R-loop formation at these sequences, mitigating their impact on replication.


Assuntos
DNA Primase/metabolismo , Replicação do DNA , DNA de Cadeia Simples/genética , DNA Polimerase Dirigida por DNA/metabolismo , Quadruplex G , Enzimas Multifuncionais/metabolismo , Estruturas R-Loop , Fase S , Animais , Células Cultivadas , Galinhas , DNA Primase/genética , DNA de Cadeia Simples/química , DNA Polimerase Dirigida por DNA/genética , Drosophila , Humanos , Enzimas Multifuncionais/genética
15.
Front Cell Neurosci ; 12: 220, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30123109

RESUMO

Alzheimer's disease (AD) is the most common form of dementia and is distinguished from other dementias by observation of extracellular Amyloid-ß (Aß) plaques and intracellular neurofibrillary tangles, comprised of fibrils of Aß and tau protein, respectively. At early stages, AD is characterized by minimal neurodegeneration, oxidative stress, nucleolar stress, and altered protein synthesis machinery. It is generally believed that Aß oligomers are the neurotoxic species and their levels in the AD brain correlate with the severity of dementia suggesting that they play a critical role in the pathogenesis of the disease. Here, we show that the incubation of differentiated human neuroblastoma cells (SHSY5Y) with freshly prepared Aß42 oligomers initially resulted in oxidative stress and subtle nucleolar stress in the absence of DNA damage or cell death. The presence of exogenous Aß oligomers resulted in altered nuclear tau levels as well as phosphorylation state, leading to altered distribution of nucleolar tau associated with nucleolar stress. These markers of cellular dysfunction worsen over time alongside a reduction in ribosomal RNA synthesis and processing, a decrease in global level of newly synthesized RNA and reduced protein synthesis. The interplay between Aß and tau in AD remains intriguing and Aß toxicity has been linked to tau phosphorylation and changes in localization. These findings provide evidence for the involvement of Aß42 effects on nucleolar tau and protein synthesis machinery dysfunction in cultured cells. Protein synthesis dysfunction is observed in mild cognitive impairment and early AD in the absence of significant neuronal death.

16.
Acta Neuropathol Commun ; 6(1): 70, 2018 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-30064522

RESUMO

Tau is known for its pathological role in neurodegenerative diseases, including Alzheimer's disease (AD) and other tauopathies. Tau is found in many subcellular compartments such as the cytosol and the nucleus. Although its normal role in microtubule binding is well established, its nuclear role is still unclear. Here, we reveal that tau localises to the nucleolus in undifferentiated and differentiated neuroblastoma cells (SHSY5Y), where it associates with TIP5, a key player in heterochromatin stability and ribosomal DNA (rDNA) transcriptional repression. Immunogold labelling on human brain sample confirms the physiological relevance of this finding by showing tau within the nucleolus colocalises with TIP5. Depletion of tau results in an increase in rDNA transcription with an associated decrease in heterochromatin and DNA methylation, suggesting that under normal conditions tau is involved in silencing of the rDNA. Cellular stress induced by glutamate causes nucleolar stress associated with the redistribution of nucleolar non-phosphorylated tau, in a similar manner to fibrillarin, and nuclear upsurge of phosphorylated tau (Thr231) which doesn't colocalise with fibrillarin or nucleolar tau. This suggests that stress may impact on different nuclear tau species. In addition to involvement in rDNA transcription, nucleolar non-phosphorylated tau also undergoes stress-induced redistribution similar to many nucleolar proteins.


Assuntos
Nucléolo Celular/efeitos dos fármacos , Nucléolo Celular/metabolismo , Agonistas de Aminoácidos Excitatórios/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Ácido Glutâmico/farmacologia , Proteínas tau/metabolismo , Encéfalo/metabolismo , Encéfalo/ultraestrutura , Diferenciação Celular/fisiologia , Linhagem Celular Tumoral , Nucléolo Celular/ultraestrutura , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Cromossômicas não Histona/ultraestrutura , DNA Ribossômico/genética , DNA Ribossômico/metabolismo , Regulação Neoplásica da Expressão Gênica/genética , Heterocromatina/fisiologia , Histonas/metabolismo , Humanos , Imunoprecipitação , Microscopia Confocal , Microscopia Eletrônica , Neuroblastoma/patologia , Neuroblastoma/ultraestrutura , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Transporte Proteico/efeitos dos fármacos , RNA Mensageiro , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transcrição Gênica/efeitos dos fármacos , Transfecção , Proteínas tau/genética , Proteínas tau/ultraestrutura
17.
Nat Cell Biol ; 20(2): 162-174, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29335528

RESUMO

Mitochondria are subcellular organelles that are critical for meeting the bioenergetic and biosynthetic needs of the cell. Mitochondrial function relies on genes and RNA species encoded both in the nucleus and mitochondria, and on their coordinated translation, import and respiratory complex assembly. Here, we characterize EXD2 (exonuclease 3'-5' domain-containing 2), a nuclear-encoded gene, and show that it is targeted to the mitochondria and prevents the aberrant association of messenger RNAs with the mitochondrial ribosome. Loss of EXD2 results in defective mitochondrial translation, impaired respiration, reduced ATP production, increased reactive oxygen species and widespread metabolic abnormalities. Depletion of the Drosophila melanogaster EXD2 orthologue (CG6744) causes developmental delays and premature female germline stem cell attrition, reduced fecundity and a dramatic extension of lifespan that is reversed with an antioxidant diet. Our results define a conserved role for EXD2 in mitochondrial translation that influences development and ageing.


Assuntos
Proteínas de Drosophila/fisiologia , Exonucleases/genética , Longevidade/genética , Proteínas Mitocondriais/fisiologia , Ribossomos Mitocondriais/metabolismo , Biossíntese de Proteínas , Animais , Núcleo Celular/genética , Núcleo Celular/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Exonucleases/fisiologia , Células Germinativas/metabolismo , Homeostase , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , RNA Mensageiro/genética , Espécies Reativas de Oxigênio/metabolismo , Células-Tronco/metabolismo
18.
Nat Commun ; 8(1): 1251, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29089537

RESUMO

Prokaryotic Ligase D is a conserved DNA repair apparatus processing DNA double-strand breaks in stationary phase. An orthologous Ligase C (LigC) complex also co-exists in many bacterial species but its function is unknown. Here we show that the LigC complex interacts with core BER enzymes in vivo and demonstrate that together these factors constitute an excision repair apparatus capable of repairing damaged bases and abasic sites. The polymerase component, which contains a conserved C-terminal structural loop, preferentially binds to and fills-in short gapped DNA intermediates with RNA and LigC ligates the resulting nicks to complete repair. Components of the LigC complex, like LigD, are expressed upon entry into stationary phase and cells lacking either of these pathways exhibit increased sensitivity to oxidising genotoxins. Together, these findings establish that the LigC complex is directly involved in an excision repair pathway(s) that repairs DNA damage with ribonucleotides during stationary phase.


Assuntos
Quebras de DNA de Cadeia Dupla , DNA Ligases/genética , Reparo do DNA/genética , DNA/metabolismo , Mycobacterium smegmatis/genética , RNA Polimerase III/metabolismo , Mycobacterium/genética , RNA
19.
Methods Enzymol ; 591: 327-353, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28645375

RESUMO

Primases play a crucial role in the initiation of DNA synthesis during replication by de novo synthesis of short RNA or DNA "primers." In recent years, evidence has accumulated which expands the essential roles of primases to include, not only the initiation of replication but also other critical roles in DNA metabolism, including damage tolerance and repair. Despite the broadening roles for these enzymes, the methods used to identify and characterize primase activities are limited. Historically, biochemical analysis of primases has been based on the synthesis of radioactively labeled primers and their detection on denaturing polyacrylamide gels. In the last two decades, a number of alternative primase assays have been developed in an effort to supersede radioactive methods. However, the radioactive gel-based assay, which has not significantly changed since its conception in the late 1970s, remains the most widely used and favored method. In this chapter, we discuss the background to, and the advantages and disadvantages of, the current techniques used to characterize primase activity in vitro. Finally, we describe an alternative, gel-based, fluorescent primase assay, which we have successfully used in the characterization of a recently identified primase-polymerase, PrimPol.


Assuntos
DNA Primase/metabolismo , Primers do DNA , Cromatografia Líquida de Alta Pressão , DNA/biossíntese , Fluorescência
20.
Nat Commun ; 8: 15222, 2017 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-28534480

RESUMO

DNA damage and secondary structures can stall the replication machinery. Cells possess numerous tolerance mechanisms to complete genome duplication in the presence of such impediments. In addition to translesion synthesis (TLS) polymerases, most eukaryotic cells contain a multifunctional replicative enzyme called primase-polymerase (PrimPol) that is capable of directly bypassing DNA damage by TLS, as well as repriming replication downstream of impediments. Here, we report that PrimPol is recruited to reprime through its interaction with RPA. Using biophysical and crystallographic approaches, we identify that PrimPol possesses two RPA-binding motifs and ascertained the key residues required for these interactions. We demonstrate that one of these motifs is critical for PrimPol's recruitment to stalled replication forks in vivo. In addition, biochemical analysis reveals that RPA serves to stimulate the primase activity of PrimPol. Together, these findings provide significant molecular insights into PrimPol's mode of recruitment to stalled forks to facilitate repriming and restart.


Assuntos
DNA Primase/metabolismo , Replicação do DNA , DNA Polimerase Dirigida por DNA/metabolismo , Enzimas Multifuncionais/metabolismo , Proteína de Replicação A/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Galinhas , Cromatina/metabolismo , Cristalografia por Raios X , DNA Primase/química , DNA Polimerase Dirigida por DNA/química , Células HEK293 , Humanos , Modelos Biológicos , Enzimas Multifuncionais/química , Ligação Proteica , Domínios Proteicos , Proteína de Replicação A/química , Xenopus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...